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A recent investigation of hydromagnetic waves in a rotating fluid has revealed 
certain ‘valve’-like critical levels associated with each wave which can be 
effectively penetratedfrom one side only. This effect is illustrated in the present 
paper by means of two further examples, namely (a) the propagation of hydro- 
magnetio-gravity waves in a non-uniform magnetic field, and ( b )  the propaga- 
tion of internal gravity waves in a wind which, though unidirectional, is both 
horizontally and vertically sheared. 

1. Introduction 
The propagation of plane hydromagnetic waves in a uniformly rotating fluid 

permeated by a co-rotating but non-uniform magnetic field has been considered 
in a recent paper (Acheson 1972a, hereafter referred to as A). The spatial varia- 
tions of the magnetic field were assumed to be such that by choosing a suitably 
oriented rectangular Cartesian co-ordinate system (x, y, z )  rotating with both 
fluid and field the latter could be expressed in the form B, = {B,(x), B,(x), 01, the  
z axis not necessarily coinciding with the angular velocity vector 

a = (Q,, Qu, 4. 
In addition, the fluid was assumed non-dissipative, incompressible and of 
uniform density. When 5L = 0 hydromagnetic waves propagate along the lines of 
force and there is in consequence no energy flux in the x direction. In  a rotating 
system, however, the action of the Coriolis force permits hydromagnetic wave 
propagation across field lines (Lehnert 1954). In  A it was demonstrated that. 
associated with each wave (characterized by a frequency w and wavenumber 
components k and I in the x and y directions respectively) there are ‘critical 
levels ’ z = zc (at which the quantity IB, k + B, I ]  assumes one of two special values 
depending inter alia on the wave in question) which the wave may effectively 
penetrate one way only (i.e. either from the side z < z,  or from the side z > 2,). 

Ifthe wave approaches one of its critical levels from the ‘wrong ’ side very little of 
its energy is transmitted or reflected, most of it instead being trapped in the im- 
mediate vicinity of the critical level. 

This ‘valve ’ effect may be described particularly simply for a class of ‘slow ’ 
hydromagnetic waves of interest in connexioa with the dynamics of the earth’s 
liquid core (for references see Acheson & Hide 1973; Hide & Stewartson 1972; 
Roberts & Soward 1972). Associated with each ‘slow’ wave there is then (as in 
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the example in 32; see equation (2.3)) only one critical value of the quantity 
I B,k + B,Zl, and the wave may penetrate its critical level only if its local speed of 
propagation W in the z direction is such that 

(Acheson 1972a). 
The purpose of the present paper is to point out that this ‘valve’ effect may, in 

principle a t  least (cf. §4), be a common feature of inhomogeneous systems sup- 
porting anisotropic wave propagation, provided only that a certain inherent mym- 
metry is present. The required asymmetry in the above system, for example, is 
present if the rotation vector GI is neither parallel to nor perpendicular to the direc- 
tion z of non-uniformity, as evinced by equation (1.1). Now suppose instead 
that both the fluid and the field Bo = (B,(z), B,(x), 0}  are stationary but that the 
fluid is stably stratijied in the direction of gravity g = (gz, gzr, gz). Similar effects 
then arise, and these are discussed in 5 2 .  A further example of valve-like critical- 
level behaviour is provided in Q 3, where we consider disturbances to the unidirec- 
tional shear flow U = {U,(z), 0 ,  01 of a stratified fluid under gravity g = (0, gV, 9,). 
With g, + 0 this constitutes a simple, if slightly artificial, variant of the problem 
initially studied by Bretherton (1966) and Booker & Bretherton (1967). 

When the typical wavelengths h involved are very short compared with the 
length scale L characterizing the inhomogeneities of the system the propagation 
of localized disturbances through the fluid is conveniently viewed in terms of the 
motion of wave ‘packets’, each of which possesses a reasonably well-defined fre- 
quency w and wavenumber vector K = (k, I, m). When, by hypothesis, the local 
properties of the system depend only on z (say), the set of quantities w ,  k and I 
acts as a ‘label’ for the packet, while the z component m of the wavenumber 
changes as the packet moves, its value at  any level being given in terms of the 
local properties of the medium by the dispersion relation 

which may alternatively be written as 

WQ,(Q,k+ Q J )  w < 0 (1.1) 

m = m(w, k, I ,  x ) ,  (1.2) 

w = W ( K , Z )  (1.3) 
(see equation (1.5)). Further, the velocity with which any particular packet moves 
through the fluid is given in terms of the local value of m and z by the familiar 
expression 

for the group velocity, obtained by differentiating (1.3). On combining (1.2) and 
(1.4) the propagation velocity u, of any packet may thus be expressed in terms of 
2, provided only that the local dispersion relation (1.3) has been established. 

For hydromagnetic waves in a non-dissipative incompressible fluid whose 
undisturbed state is one of rest the relation (1.3) takes the form 

w2 = (V . K ) ~  + (N x K ) ~ / K ~  (1.5) 

(see, for example, Chandrasekhar 1961; Hide 1969). Here the Brunt-Vaisak 
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(which is, in this paper, constant by hypothesis) acts as a convenient measure 
of the buoyancy of the fluid, and the Alfv6n velocity 

v = W x ) ,  BJ4, O}/Cu;iiO)* (1.7) 

acts as a convenient measure of the local magnetic field (p,po and Po being the 
magnetic permeability, density and mean density of the fluid respectively). 

When N = 0 equation (1.5) reduces to the dispersion relationship for plane 
Alfvh waves (see, for example, Alfvbn & F'tilthammar 1963, p. 7 8 ) ,  for which 
Lorentz forces alone provide the restoring torques on individual fluid elements. 
When V = 0 equation (1.5) reduces to the dispersion relationship for internal 
gravity 'waves (see, for example, Yih 1969), for which buoyancy forces alone 
provide the restoring torques. 

The requirements for the validity of (a) the neglect, as implied by the use of 
the mean density in (1.7), of ray path distortion due to density variations (which 
are in the direction of gravity) as compared with that due to magnetic field 
variations (which, by definition, take place in the z direction) and (b )  the 'BOUS- 
sinesq approximation' used in the derivation of (1.5) are both met if, in addition 
to the ' short-wavelength ' restriction h < B/IVBI implicit in the wave-packet 
approach, 

Similar remarks pertain to the non-hydromagnetic example in $3, with the 
magnetic field in ( 1.8) being then replaced by the wind U .  

While the wave-packet approach provides an attractively simple picture of the 
various propagation properties it is an unfortunate fact that it  predicts, in both 
the systems investigated in this paper (as in those studied by Bretherton (1966) 
and Acheson (1972a)) ,  an indefinite increase in the wave energy density of a packet 
which isin the process of being ' captured' at its critical level, so that the assump- 
tion of small wave amplitude on which the whole analysis is based ultimately 
breaks down. Results obtained by this formalism must therefore be regarded only 
as suggestive of what to look for in more careful studies of the dynamics in the 
immediate neighbourhood of the critical levels (such as those of Booker & 
Bretherton ( 1  967) and $ 3 of A), Accordingly in both 3 3 2 and 3 the wave-packet 
approach is followed by a brief presentation of the results obtained from such 
analyses, which do not involve the ' short-wavelength ' approximation. 

lVPOl/PO @ IVBIP.  (1.8) 

2. Hydromagnetic-gravity waves in a sheared magnetic field 
Consider now the propagation of a wave packet under the influence of both 

Lorentz and buoyancy forces in the system outlined above. Any wave packet 
(identified by particular values of w ,  k and 1) then has a x component of propaga- 
tion velocity m{(V,k + v,Z)2+ N ;  + N ;  - d} - N&k + N,1) 

o (k2+ l2 + m2) 
wg = 

and the local value of m is related to that of V by 

{(v,lc + V , l ) Z  +Nit + N ;  - w2} m2 - 2Nz(N,k + N,Z) m 

+ (k2+ 1 2 )  {(Ek + V,Z)2 + N ;  - w2} + (N,l-  N,k)2 = 0 (2.2) 
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(see (1.2)-(1.5)), an equation quadratic in rn. Thus, as the packet approaches a 
level z = z, where the quantity ( K k  + V,l)z takes the special value 

(2.3) {v,(z,) k + v,(z,) 1}2 = u2 - N;  - N;,  

one value of m given by (2 .2)  increases in magnitude indefinitely as I Z - Z ~ ) - ~  
(provided [d{V,E + V , Z } z / d z ] ~ = ~ c  =k 0 ) ,  being given asymptotically by 

ml{ (V, k + V, Z)2 + N: + - u2} = 2N,(N, k + .Nw I). (2-4) 

wg = N,(N,k +N,l)/wm! (2 .5)  

(see equation (2.1)), so that when Iz-zJ is small the level of the packet changes 
according to the equation 

(2.6) 

where a is a constant. This may be integrated to give 

(2.7) 

where b is another constant, and the packet thus slows down in such a way that i t  
never reaches its critical level in aJinite time. It is therefore neither transmitted nor 
reflected, but instead effectively ' captured' and constrained to propagate almost 
along the lines of force there, as evinced by the asymptotic relations for its 
other propagation components: 

(2.8) 

The z velocity component of the packet evidently takes the asymptotic form 

a z p t  = a(z - z,),, 

z - 2, = - l/(at + b) ,  

w(ug,  v g )  = (w! + V,o (v,, V,). 
The other value of m tends to a finite value m, (obtained by neglecting the quadra- 
tic term in (2.2)) as the critical level is approached, and the corresponding z 
component of the group velocity tends to a non-zero value: 

w, = - N, (N, k + N,l)/w(k2 + Z2+ mg). (2.9) 

A wave packet approaching its critical level is therefore either transmitted or 
captured there according to the criterion 

I- < 0 for transmission, 
wg ' (N~k+N,z )w  { > 0 for capture. (2.10) 

Note the striking similarity in form between the criterion (2.10) and equation 
(l.l), which gives the transmission criterion for a 'slow' hydromagnetic wave 
packet in a rapidly rotating fluid of uniform density. The criterion (1.1) is obtained 
by formally replacing N in (2.10) by 92. 

While the valve-like critical levels above are the only ones strictly germane 
to the subject of this paper there are other levels a t  which waves cease to propa- 
gate across field lines. The roots of (2.2) are real only if 

(2.11) NZ+Ni+NE Z W~-(V,IC+V,Z)~ 2 (N,Z-N,k)z/(k2+Z2). 

If a particular packet propagates towards a level z = zr where the magnetic 
field takes either of the above limiting values its z component of propagation speed 
decreases as 1z - z,l*. It therefore reaches such a level in afinite time (cf. (2.6) and 
(2.7)) and is reflected. 
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FIGURE 1. Schematic diagram illustrating the 'valve' effect for a hydromagnetic 
wave packet propagating in a stratified fluid. 

Figure 1 provides a sketch (based on careful investigation of the ray path 
slope dzldy = w,lv, at various key points, e.g. z = z, and z = z,) of the projection 
in the y, x plane of a complete ray path for the case N, = 0 (cf. McKenzie 1973). 
The magnetic field, measured by 5, is directed out of the paper and increases 
with x .  Gravity g = (0, g,, 9,) acts in the y, x plane, and to view the system from a 
more conventional standpoint one may turn the sketch clockwise through about 
45'. The path drawn is that appropriate to a wave with w,  k and 1 all positive. 
If a localized disturbance with these properties is generated at  any level z and 
its initial direction of propagation along the z axis is specified then its subsequent 
motion can be traced out by following the arrows in the sketch. Thus, such a wave 
generated somewhere below its critical level and initially moving downwards is 
bent toward the vertical and undergoes a reflexion. While both horizontal and 
vertical propagation speeds approach zero (the former as J x  - z,l and the latter as 
I z - z,l4) the packet's propagation speed ug out of the paper approaches 

(w2- N ;  - N t ) / w k ;  

thus what appears in projection to be cusp-like reflexion would not appear so in 
three dimensions. The packet is then bent away from the vertical and penetrates 
its critical level from below (see (2. lo), setting N ,  = 0). After undergoing another 
reflexion, being unable to penetrate its critical level from above, it is finally 
captured there. 

We note that a wave packet with w and k positive but 1 negative follows a similar 
path to that illustrated in figure 1 but proceeds in a direction opposite to that 
shown by the arrows (as one may check by noting from (2.10) that when A?, = 0 
a change of sign of 1 changes the sense of the valve effect). 
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While the elementary and essentially kinematic considerations above (cf. 
Lighthill 1965), on which figure 1 is based,t provide perhaps the simplest and 
most concise way of illustrating the main result of this paper it would be unwise to 
place too much confidence in the method's predictions of events at  the levels 
z = z,, particularly when h < L is not satisfied, until more detailed studies includ- 
ing considerations of amplitude changes as the packet propagates (cf. remarks at 
end of $1) have been carried out. 

The essential features of the valve effect have been confirmed, however, even 
when AIL i s  only marginally less than unity, by an analysis identical in form to that 
in $ 3  of A (which is hence omitted here, but see Acheson 1971). A wave approach- 
ing its critical level from a side which, on the wave-packet formalism, would 
result in capture (see equation (2.10)), is in fact partially transmitted, albeit 
with its associated wave energy flux in the z direction (which, as in A, is indepen- 
dent of x on either side of the critical level) cut in the process by a factor 

(2.12) 

Since (Kk + V , l ) 2  = 02 - N$ - iV; at this level, (2.12) typically represents a very 
severe attenuation provided only that h/L S 1. On approaching from the other 
side, however, the same wave would be transmitted without attenuation. 

3. Internal gravity waves in a shear flow 
Suppose now that hydromagnetic effects are absent and that internal gravity 

waves propagate instead in a wind U = (Ux(z), 0, 0) sheared in some direction ( z )  
other than the vertical. This is clearly compatible with the basic equation 
ap/at + u . V p  = 0 (expressing, in the absence of thermal conduction, conservation 
of density of individual fluid elements) only if the basic density gradient is per- 
pendicular to the wind, i.e. Vpo = (0,8po/ag,ap,/8x). Since with such a wind 
profile the equilibrium is one of hydrostatic balance (i.e. Vpo = peg), the density 
gradient must be parallel to gravity and accordingly g = (0, g,, gz). Thus N, + 0 
is incompatible with the assumed (steady) wind profile, and the local dispersion 
relation simplifies to 

(N,m- N,1)2 + N$k2 + N t  k2 
(w - U,k)2 = k2 + E2+ m2 (3.1) 

(obtained by Doppler-shifting (1.5) and setting V = 0). 
velocity of any packet is therefore 

- m{ (w - Uxk)2 - Nz)  - N,N'Z 
(w-Uxk)(k2+12+m2) ' 

wg = 

The z component of 

(3.2) 

Near a critical level where (w - Uzk)2 = N t  one root (ml, say) of (3.1) increases 
as [ z - z, I -1 and correspondingly 

wg N N,N,l/(o - Uxk) mg, (3.3) 

The following remarks pertain equally to the non-hydromagnetic example in $ 3  8s 
illustrated in figure 2. 
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(00, k>O) t &--(%+%)* 

FIQVRE 2. Schematic diagram illustrating the 'valve' effect for internal gravity 
wave packets propagating in a shear flow. 

resulting in capture. In this case the packet in fact ceases to propagate relative 
to the flow at that level (cf. equation (2.8)). The other root tends to a finite value 
m2 and so also does 

wg N -N,N,lI(w-U,k)(k2+Z2+m%). (3.4) 

A wave packet approaching a critical level is therefore either transmitted or 
captured there according to the criterion 

I- < 0 for transmission, 
> 0 for capture 

wg N, Nv Z(O - U, k )  (3.5) 

(of. (1 .1)  and (2.10)). 

propagation. The z component m of the wavenumber is real only if 
As in 9 2 we find, on the wave-packet formalism, 'forbidden regions' for wave 

N i  + N i  > (w - U, k)2 > k2Ni/(  k2 + la)  (3.6) 

(cf. equation (2.11)). If a packet approaches a level z = x, where the wind takes 
any of these limiting values its z component of propagation speed decreases as 
Iz - zJ4 and it is reflected. 

Figure 2 provides four examples of the projection in the y, z plane of the path 
taken by a wave packet between generation (at one of the ringed points) and 
ultimate capture at one or other of the critical levels. The wind U, is directed out 
of the paper and increases with z. All packets have the same positive w and k. 
Those denoted by a plus sign have I > 0, while those denoted by a minus sign 

F L M  58 3 
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have a negative 1 of the same magnitude. The valve effect is again in evidence, 
and the sense in which it operates at each of the critical levels may readily be 
checked against (3.5). Note in particular the similarity between the (projected) 
path of the 1 > 0 packet around the lower critical level and that illustrated in 
figure 1 for the analogous hydromagnetic problem. 

As in $ 2 we now turn attention briefly to more general circumstances in which 
AIL is not necessarily very small compared with unity, anticipating that Some 
degree of transmission will then take place at  every level. In  contrast to the hydro- 
magnetic problem discussed in $ 2  the wave energy flux d per unit area in the 
z direction now depends on z owing to a continual exchange of energy between 
the wave and the mean flow, Nevertheless, it may readily be shown that between 
any two neighbouring levels of the seven singled out for special attention in figure 

(which is proportional to the rate of transfer of wind-directed momentum up 
the velocity gradient) is independent of z and accordingly acts as a convenient 
measure of the intensity of the wave (cf. Eliassen & Palm 1960; Booker & 
Bretherton 1967). 

2 the quantity Q &/(w- Uxk) (3.7) 

When Nu = 0 the valve effect disappears completely and all five levels 

kUx = W ,  w kN,/(k2 + l2)&, w f. Nu (3.8a, b, c) 

merge into one. Booker & Bretherton (1967) have shown that provided that 
Ni/(dUx/dz)2 2 1 the wave is then severely attenuated on transmission through 
such a level, viz. 

&transmitted = exp -zn 
&incident 

(3.9) 

(This is in fact a slight generalization of their original result, which was for the 
case 1 = 0.) Presumably when N, is sufficiently small compared with w the net 
attenuation suffered by a wave in its passage through all Jive levels (3.8a, b, c) is 
essentially that given by (3.9). This is certainly known to be the case in another 
simple modification of the basic (Nu = 0 )  system in which rotation with angular 
velocity Q about a vertical axis gives rise to three singular levels 

kU, = w ,  w f. 2n, (3.10) 

as Jones (1967) has demonstrated numerically. 
As far as the critical levels LU, = w -t- N, themselves are concerned, an analysis 

similar to that in $ 3  of A indicates that a wave described as being captured in 
the limit AIL + 0 is, in more general circumstances, partially transmitted, albeit 
with a transmission coe6cient 

(3.11) 

This factor is independent of .Nu and typically very small (but larger than the 
value given by (3.9) if R > 4) provided only that the Richardson number 
R = NE/(dUx/dz)2 is greater than about unity. In  accord with the wave-packet 
picture this transmission disappears completely when, other things being equal, 

Note that if 12/k2 is sufficiently large the expressions (3.9) and (3.1 1) become 
auxp -+ 0. 



Valve effect at critical levels 36 

identical and the levels (3 .8a ,b )  merge. On the other hand, the one-way or 
valve attenuation (3.11) at each of the critical levels disappears when I = 0 
(see also (3.5)), in which case the levels (3 .8b,c)  merge. 

4. Concluding remarks 
Valve-like critical-layer action, as encountered in a recent paper on the hydro- 

magnetics of rotating fluids (Acheson 1972a), has been illustrated by two further 
examples, namely (i) hydromagnetic gravity wave propagation in a sheared mag- 
netic field and (ii) internal gravity wave propagation in a shear flow. We have 
demonstrated this explicitly when hg L by means of an elementary approach 
using the concepts of wave packets and group velocity and have briefly sum- 
marized the results of more general treatments applicable even in certain circum- 
stances for which h/L is only marginally less than unity. When the wavelengths 
involved substantially exceed the length scales characteristic of inhomogeneities 
of the system, on the other hand, it is entirely possible that quite different pheno- 
mena occur. Substantial re$exion may then occur a t  critical levels and there may 
even be circumstances in which ‘ over-reflexion ’ (reflexion coefficient greater than 
unity) takes place and waves actually extract energy and momentum from the 
mean state (see, for example, Jones 1968; Breeding 1971; McKenzie 1972). 

Prom a mathematical point of view these critical levels arise typically as 
singularities of second-order ordinary differential equations (see, for example, 
equation (2.6) of A). These singularities accordingly disappear when higher 
derivatives are introduced, as would occur in $2, for example, if either (a)  dis- 
sipative effects were to be included or ( b )  the basic magnetic field were to have a 
rather more complicated form, e.g. B, = (B,(z), B&), B,) (with B, =k 0). While, 
in view of the work of Hazel (1967) and Baldwin & Roberts (1970), one might 
anticipate that in smoothing out such singularities small dissipative effects will 
not significantly modify the overall properties of the critical layers predicted by 
the methods used here and in A, it is not yet clear that small changes in the basic 
state of the kind suggested above (even when B, < Bz(zc), for example) will play 
such a passive and secondary role. 

It is also important to bear in mind that we have yet to establish properly 
the circumstances in which the systems discussed in this paper and in A are 
stable to small disturbances. As far as $$2 and 3 are concerned this aspect of the 
problem has been studied so far only in the case of a verticab gradient of magnetic 
field/wind (for which the valve effect is absent). The hydromagnetic system of 
$ 2  is then stable regardless of the magnetic field profile B,(x), while Miles (1961) 
and Howard (1961) have shown that the system in $ 3  is then stable provided 
that the Richardson number R = Ng/(dU,/dz)2 everywhere exceeds 0-25. Even 
when similar sufficient conditions for stability (also on the basis of a non-diissipa- 
tive theory) have been established for the more general case (N$+N:  =k 0 )  it  
will still be necessary to examine in $2,  for example, the development of any 
‘resistive instabilities’ (in the origin of which the critical layer plays an altogether 
different role; see, for example, Furth, Killeen & Rosenbluth 1963; Baldwin & 
Roberts 1972). Such an investigation will also be appropriate for the rotating 

3-2 
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system studied in A, for that is stable in the absence of dissipation regardless 
of both the details of the magnetic field profle B,(z) and the angle between the 
z axis and S2 (Acheson 1972b). It is important to bear in mind, however, that 
magnetic field configurations occurring naturally in rotating fluid systems of 
geophysical or astrophysical interest will be characterized (in contrast to the 
system discussed in A ) by cuwed magnetic field lines, and that spatial vaxiations 
of B can then lead to wavelike instabilities (see, for example, Acheson 1 9 7 2 ~ ) .  
Thus here again, as in the quite different context of the preceding paragraph, we 
are led to question not so much the validity of the neglect of dissipation but 
rather the typicality of the basic equilibrium configurations chosen for study. 

The resolution of this question of whether or not the phenomena discussed in 
this paper and in A will be observable in practice only for a relatively narrow 
range of magnetic field/velocity configurations is, of course, essential before one 
can properly evaluate the possible role of these valve-like critical levels in natural 
systems. Moffatt (1  972), for example, has recently indicated their practical inter- 
est from the point of view of turbulent fluid dynamos, where some selection 
mechanism producing a net flux of energy parallel to the rotation vector C2 is 
vital to the whole regenerative process. Critical levels for internal gravity waves 
in a shear flow, on the other hand, are of interest in connexion with certain 
aspects of meteorology, although to avoid possible misunderstanding at this 
point it seems prudent to finally emphasize that developments in $ 3  are not 
explicitly directed toward this end (for critiques of the original (Bretherton 1966) 
model in relation to atmospheric conditions and various appropriate modifica- 
tions to it see, for example, Bretherton 1969; Breeding 1971; Jones 1967; Lindzen 
1970; Lindzen & Holton 1968) but rather toward the prediction of some non- 
hydromagnetic valve-like critical-level phenomena whioh may hopefully, at 
some stage, be tested experimentally (cf. Bretherton, Hazel, Thorpe & Wood 
1967; see appendix to Hazel 1967). The extreme difficulty of performing hydro- 
magnetic experiments to test directly the predictions of a ‘perfectly conducting ’ 
theory such as that of A is well known. 
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